Birkhäuser

  • This edited volume has a two-fold purpose. First, comprehensive survey articles provide a way for beginners to ease into the corresponding sub-fields. These are then supplemented by original works that give the more advanced readers a glimpse of the current research in geometric analysis and related PDEs.The book is of significant interest for researchers, including advanced Ph.D. students, working in geometric analysis. Readers who have a secondary interest in geometric analysis will benefit from the survey articles.The results included in this book will stimulate further advances in the subjects: geometric analysis, including complex differential geometry, symplectic geometry, PDEs with a geometric origin, and geometry related to topology.Contributions by Claudio Arezzo, Alberto Della Vedova, Werner Ballmann, Henrik Matthiesen, Panagiotis Polymerakis, Sun-Yung A. Chang, Zheng-Chao Han, Paul Yang, Tobias Holck Colding, William P. Minicozzi II, Panagiotis Dimakis, Richard Melrose, Akito Futaki, Hajime Ono, Jiyuan Han, Jeff A. Viaclovsky, Bruce Kleiner, John Lott, Slawomir Kolodziej, Ngoc Cuong Nguyen, Chi Li, Yuchen Liu, Chenyang Xu, YanYan Li, Luc Nguyen, Bo Wang, Shiguang Ma, Jie Qing, Xiaonan Ma, Sean Timothy Paul, Kyriakos Sergiou, Tristan Rivière, Yanir A. Rubinstein, Natasa Sesum, Jian Song, Jeffrey Streets, Neil S. Trudinger, Yu Yuan, Weiping Zhang, Xiaohua Zhu and Aleksey Zinger.

  • Morrey Spaces

    David Adams

    In this set of lecture notes, the author includes some of the latest research on the theory of Morrey Spaces associated with Harmonic Analysis.  There are three main claims concerning these spaces that are covered: determining the integrability classes of the trace of Riesz potentials of an arbitrary Morrey function; determining the dimensions of singular sets of weak solutions of PDE (e.g. The Meyers-Elcart System); and determining whether there are any "full" interpolation results for linear operators between Morrey spaces. This book will serve as a useful reference to graduate students and researchers interested in Potential Theory, Harmonic Analysis, PDE, and/or Morrey Space Theory.      

  • One of the world's foremost geometers, Alan Weinstein has made deep contributions to symplectic and differential geometry, Lie theory, mechanics, and related fields. Written in his honor, the invited papers in this volume reflect the active and vibrant research in these areas and are a tribute to Weinstein's ongoing influence.

    The well-recognized contributors to this text cover a broad range of topics: Induction and reduction for systems with symmetry, symplectic geometry and topology, geometric quantization, the Weinstein Conjecture, Poisson algebra and geometry, Dirac structures, deformations for Lie group actions, Kähler geometry of moduli spaces, theory and applications of Lagrangian and Hamiltonian mechanics and dynamics, symplectic and Poisson groupoids, and quantum representations.

    Intended for graduate students and working mathematicians in symplectic and Poisson geometry as well as mechanics, this text is a distillation of prominent research and an indication of the future trends and directions in geometry, mechanics, and mathematical physics.
    Contributors: H. Bursztyn, M. Cahen, M. Crainic, J. J. Duistermaat, K. Ehlers, S. Evens, V. L. Ginzburg, A. B. Givental, S. Gutt, D. D. Holm, J. Huebschmann, L. Jeffrey, F. Kirwan, M. Kogan, J. Koiller, Y. Kosmann-Schwarzbach, B. Kostant, C. Laurent-Gengoux, J-H. Lu, J. E. Marsden, K. C. H. Mackenzie, Y. Maeda, C-M. Marle, T. E. Milanov, N. Miyazaki, R. Montgomery, Y-G. Oh, J-P. Ortega, H. Omori, T. S. Ratiu, P. M. Rios, L. Schwachhfer, J. Stasheff, I. Vaisman, A. Yoshioka, P. Xu, and S. Zelditch.

  • This open access book provides an extensive treatment of Hardy inequalities and closely related topics from the point of view of Folland and Stein's homogeneous (Lie) groups. The place where Hardy inequalities and homogeneous groups meet is a beautiful area of mathematics with links to many other subjects. While describing the general theory of Hardy, Rellich, Caffarelli-Kohn-Nirenberg, Sobolev, and other inequalities in the setting of general homogeneous groups, the authors pay particular attention to the special class of stratified groups. In this environment, the theory of Hardy inequalities becomes intricately intertwined with the properties of sub-Laplacians and subelliptic partial differential equations. These topics constitute the core of this book and they are complemented by additional, closely related topics such as uncertainty principles, function spaces on homogeneous groups, the potential theory for stratified groups, and the potential theory for general Hrmander's sums of squares and their fundamental solutions.

    This monograph is the winner of the 2018 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics. As can be attested as the winner of such an award, it is a vital contribution to literature of analysis not only because it presents a detailed account of the recent developments in the field, but also because the book is accessible to anyone with a basic level of understanding of analysis. Undergraduate and graduate students as well as researchers from any field of mathematical and physical sciences related to analysis involving functional inequalities or analysis of homogeneous groups will find the text beneficial to deepen their understanding.

  • The work on Autonomic Road Transport Support (ARTS) presented here aims at meeting the challenge of engineering autonomic behavior in Intelligent Transportation Systems (ITS) by fusing research from the disciplines of traffic engineering and autonomic computing. Ideas and techniques from leading edge artificial intelligence research have been adapted for ITS over the last 30 years. Examples include adaptive control embedded in real time traffic control systems, heuristic algorithms (e.g. in SAT-NAV systems), image processing and computer vision (e.g. in automated surveillance interpretation). Autonomic computing which is inspired from the biological example of the body's autonomic nervous system is a more recent development. It allows for a more efficient management of heterogeneous distributed computing systems. In the area of computing, autonomic systems are endowed with a number of properties that are generally referred to as self-X properties, including self-configuration, self-healing, self-optimization, self-protection and more generally self-management. Some isolated examples of autonomic properties such as self-adaptation have found their way into ITS technology and have already proved beneficial.   This edited volume provides a comprehensive introduction to Autonomic Road Transport Support (ARTS) and describes the development of ARTS systems. It starts out with the visions, opportunities and challenges, then presents the foundations of ARTS and the platforms and methods used and it closes with experiences from real-world applications and prototypes of emerging applications. This makes it suitable for researchers and practitioners in the fields of autonomic computing, traffic and transport management and engineering, AI, and software engineering. Graduate students will benefit from state-of-the-art description, the study of novel methods and the case studies provided.

  • ?This book presents a concise introduction to a unified Hilbert space approach to the mathematical modelling of physical phenomena which has been developed over recent years by Picard and his co-workers. The main focus is on time-dependent partial differential equations with a particular structure in the Hilbert space setting that ensures well-posedness and causality, two essential properties of any reasonable model in mathematical physics or engineering.However, the application of the theory to other types of equations is also demonstrated. By means of illustrative examples, from the straightforward to the more complex, the authors show that many of the classical models in mathematical physics as well as more recent models of novel materials and interactions are covered, or can be restructured to be covered, by this unified Hilbert space approach.
    The reader should require only a basic foundation in the theory of Hilbert spaces and operators therein. For convenience, however, some of the more technical background requirements are covered in detail in two appendices The theory is kept as elementary as possible, making the material suitable for a senior undergraduate or master's level course. In addition, researchers in a variety of fields whose work involves partial differential equations and applied operator theory will also greatly benefit from this approach to structuring their mathematical models in order that the general theory can be applied to ensure the essential properties of well-posedness and causality.

  • Since the birth of rational homotopy theory, the possibility of extending the Quillen approach -  in terms of Lie algebras - to a more general category of spaces, including the non-simply connected case, has been a challenge for the algebraic topologist community. Despite the clear Eckmann-Hilton duality between Quillen and Sullivan treatments, the simplicity in the realization of algebraic structures in the latter contrasts with the complexity required by the Lie algebra version.
    In this book, the authors develop new tools to address these problems. Working with complete Lie algebras, they construct, in a combinatorial way, a cosimplicial Lie model for the standard simplices. This is a key object, which allows the definition of a new model and realization functors that turn out to be homotopically equivalent to the classical Quillen functors in the simply connected case. With this, the authors open new avenues for solving old problems and posing new questions.
    This monograph is the winner of the 2020 Ferran Sunyer i Balaguer Prize, a prestigious award for books of expository nature presenting the latest developments in an active area of research in mathematics.

  • This book demonstrates the influence of geometry on the qualitative behaviour of solutions of quasilinear PDEs on Riemannian manifolds. Motivated by examples arising, among others, from the theory of submanifolds, the authors study classes of coercive elliptic differential inequalities on domains of a manifold M with very general nonlinearities depending on the variable x, on the solution u and on its gradient. The book highlights the mean curvature operator and its variants, and investigates the validity of strong maximum principles, compact support principles and Liouville type theorems. In particular, it identifies sharp thresholds involving curvatures or volume growth of geodesic balls in M to guarantee the above properties under appropriate Keller-Osserman type conditions, which are investigated in detail throughout the book, and discusses the geometric reasons behind the existence of such thresholds. Further, the book also provides a unified review of recent results in the literature, and creates a bridge with geometry by studying the validity of weak and strong maximum principles at infinity, in the spirit of Omori-Yau's Hessian and Laplacian principles and subsequent improvements.

  • The present monograph develops a unified theory of Steinberg groups, independent of matrix representations, based on the theory of Jordan pairs and the theory of 3-graded locally finite root systems.
    The development of this approach occurs over six chapters, progressing from groups with commutator relations and their Steinberg groups, then on to Jordan pairs, 3-graded locally finite root systems, and groups associated with Jordan pairs graded by root systems, before exploring the volume's main focus: the definition of the Steinberg group of a root graded Jordan pair by a small set of relations, and its central closedness. Several original concepts, such as the notions of Jordan graphs and Weyl elements, provide readers with the necessary tools from combinatorics and group theory.
    Steinberg Groups for Jordan Pairs is ideal for PhD students and researchers in the fields of elementary groups, Steinberg groups, Jordan algebras, and Jordan pairs. By adopting a unified approach, anybody interested in this area who seeks an alternative to case-by-case arguments and explicit matrix calculations will find this book essential.

  • This book focuses on the theory of the Gibbs semigroups, which originated in the 1970s and was motivated by the study of strongly continuous operator semigroups with values in the trace-class ideal. The book offers an up-to-date, exhaustive overview of the advances achieved in this theory after half a century of development.  It begins with a tutorial introduction to the necessary background material, before presenting the Gibbs semigroups and then providing detailed and systematic information on the Trotter-Kato product formulae in the trace-norm topology. In addition to reviewing the state-of-art concerning the Trotter-Kato product formulae, the book extends the scope of exposition from the trace-class ideal to other ideals. Here, special attention is paid to results on semigroups in symmetrically normed ideals and in the Dixmier ideal.
    By examining the progress made in Gibbs semigroup theory and in extensions of the Trotter-Kato product formulae to symmetrically normed and Dixmier ideals, the book shares timely and valuable insights for readers interested in pursuing these subjects further. As such, it will appeal to researchers, undergraduate and graduate students in mathematics and mathematical physics.

  • This volume, a celebration of Anthony Joseph's fundamental influence on classical and quantized representation theory, explores a wide array of current topics in Lie theory by experts in the area. The chapters are based on the 2017 sister conferences titled "Algebraic Modes of Representations," the first of which was held from July 16-18 at the Weizmann Institute of Science and the second from July 19-23 at the University of Haifa. The chapters in this volume cover a range of topics, including:Primitive idealsInvariant theoryGeometry of Lie group actionsQuantum affine algebrasYangiansCategorificationVertex algebrasThis volume is addressed to mathematicians who specialize in representation theory and Lie theory, and who wish to learn more about this fascinating subject.

  • This book provides a complete exposition of equidistribution and counting problems weighted by a potential function of common perpendicular geodesics in negatively curved manifolds and simplicial trees. Avoiding any compactness assumptions, the authors extend the theory of Patterson-Sullivan, Bowen-Margulis and Oh-Shah (skinning) measures to CAT(-1) spaces with potentials. The work presents a proof for the equidistribution of equidistant hypersurfaces to Gibbs measures, and the equidistribution of common perpendicular arcs between, for instance, closed geodesics. Using tools from ergodic theory (including coding by topological Markov shifts, and an appendix by Buzzi that relates weak Gibbs measures and equilibrium states for them), the authors further prove the variational principle and rate of mixing for the geodesic flow on metric and simplicial trees-again without the need for any compactness or torsionfree assumptions.
    In a series of applications, using the Bruhat-Tits trees over non-Archimedean local fields, the authors subsequently prove further important results: the Mertens formula and the equidistribution of Farey fractions in function fields, the equidistribution of quadratic irrationals over function fields in their completions, and asymptotic counting results of the representations by quadratic norm forms.
    One of the book's main benefits is that the authors provide explicit error terms throughout. Given its scope, it will be of interest to graduate students and researchers in a wide range of fields, for instance ergodic theory, dynamical systems, geometric group theory, discrete subgroups of locally compact groups, and the arithmetic of function fields.

  • This volume offers an integrated understanding of how the theory of general relativity gained momentum after Einstein had formulated it in 1915. Chapters focus on the early reception of the theory in physics and philosophy and on the systematic questions that emerged shortly after Einstein's momentous discovery. They are written by physicists, historians of science, and philosophers, and were originally presented at the conference titled Thinking About Space and Time: 100 Years of Applying and Interpreting General Relativity, held at the University of Bern from September 12-14, 2017. By establishing the historical context first, and then moving into more philosophical chapters, this volume will provide readers with a more complete understanding of early applications of general relativity (e.g., to cosmology) and of related philosophical issues. Because the chapters are often cross-disciplinary, they cover a wide variety of topics related to the general theory of relativity. These include:Heuristics used in the discovery of general relativityMach's PrincipleThe structure of Einstein's theoryCosmology and the Einstein worldStability of cosmological modelsThe metaphysical nature of spacetimeThe relationship between spacetime and dynamicsThe Geodesic PrincipleSymmetriesThinking About Space and Time will be a valuable resource for historians of science and philosophers who seek a deeper knowledge of the (early and later) uses of general relativity, as well as for physicists and mathematicians interested in exploring the wider historical and philosophical context of Einstein's theory.

  • Stochastic Approaches to Electron Transport in Micro- and Nanostructures Nouv.

    The book serves as a synergistic link between the development of mathematical models and the emergence of stochastic (Monte Carlo) methods applied for the simulation of current transport in electronic devices. Regarding the models, the historical evolution path, beginning from the classical charge carrier transport models for microelectronics to current quantum-based nanoelectronics, is explicatively followed. Accordingly, the solution methods are elucidated from the early phenomenological single particle algorithms applicable for stationary homogeneous physical conditions up to the complex algorithms required for quantum transport, based on particle generation and annihilation. The book fills the gap between monographs focusing on the development of the theory and the physical aspects of models, their application, and their solution methods and monographs dealing with the purely theoretical approaches for finding stochastic solutions of Fredholm integral equations.

  • The Finnish mathematician and astronomer Anders Johan Lexell (1740-1784) was a long-time close collaborator as well as the academic successor of Leonhard Euler at the Imperial Academy of Sciences in Saint Petersburg. Lexell was initially invited by Euler from his native town of Abo (Turku) in Finland to Saint Petersburg to assist in the mathematical processing of the astronomical data of the forthcoming transit of Venus of 1769. A few years later he became an ordinary member of the Academy. This is the first-ever full-length biography devoted to Lexell and his prolific scientific output. His rich correspondence especially from his grand tour to Germany, France and England reveals him as a lucid observer of the intellectual landscape of enlightened Europe. In the skies, a comet, a minor planet and a crater on the Moon named after Lexell also perpetuate his memory.

  • This second volume of Gyllenbok's encyclopaedia of historical metrology comprises the first part of the compendium of measurement systems and currencies of all sovereign states of the modern World (A-I).Units of measurement are of vital importance in every civilization through history. Since the early ages, man has through necessity devised various measures to assist him in everyday life. They have enabled and continue to enable us to trade in commonly and equitably understood amounts, and to investigate, understand, and control the chemical, physical, and biological processes of the natural world.
    The encyclopeadia will be of use not only to historians of science and technology, but also to economic and social historians and should be in every major academic and national library as standard reference work on the topic.

  • The book consists of articles based on the XXXVIII Bialowieza Workshop on Geometric Methods in Physics, 2019. The series of Bialowieza workshops, attended by a community of experts at the crossroads of mathematics and physics, is a major annual event in the field. The works in this book, based on presentations given at the workshop, are previously unpublished, at the cutting edge of current research, typically grounded in geometry and analysis, with applications to classical and quantum physics.
    For the past eight years, the Bialowieza Workshops have been complemented by a School on Geometry and Physics, comprising series of advanced lectures for graduate students and early-career researchers. The extended abstracts of the five lecture series that were given in the eighth school are included. 
    The unique character of the Workshop-and-School series draws on the venue, a famous historical, cultural and environmental site in the Bialowieza forest, a UNESCO World Heritage Centre in the east of Poland: lectures are given in the Nature and Forest Museum and local traditions are interwoven with the scientific activities.
    The chapter "Toeplitz Extensions in Noncommutative Topology and Mathematical Physics" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

  • This volume features a collection of contributed articles and lecture notes from the XIII Symposium on Probability and Stochastic Processes, held at UNAM, Mexico, in December 2017.It is split into two main parts: the first one presents lecture notes of the course provided by Mauricio Duarte, followed by its second part which contains research contributions of some of the participants. 

  • Wave phenomena are ubiquitous in nature. Their mathematical modeling, simulation and analysis lead to fascinating and challenging problems in both analysis and numerical mathematics. These challenges and their impact on significant applications have inspired major results and methods about wave-type equations in both fields of mathematics.
    The Conference on Mathematics of Wave Phenomena 2018 held in Karlsruhe, Germany, was devoted to these topics and attracted internationally renowned experts from a broad range of fields. These conference proceedings present new ideas, results, and techniques from this exciting research area.

  • Beyond Lack of Compactness and Lack of Stability of a Coupled Parabolic-Hyperbolic Fluid-Structure System.- A Continuous Adjoint Approach to Shape Optimization for Navier Stokes Flow.- Recent Advances in the Analysis of State-constrained Elliptic Optimal Control Problems.- Fast and Strongly Localized Observation for a perturbed Plate Equation.- Representations, Composition, and Decomposition of C 1,1-hypersurfaces.- On Some Nonlinear Optimal Control Problems with Vector-valued Affine Control Constraints.- Weak Solutions to a Model for Crystal Growth from the Melt in Changing Magnetic Fields.- Lavrentiev Prox-regularization Methods for Optimal Control Problems with Pointwise State Constraints.- Nonlinear Feedback Solutions for a Class of Quantum Control Problems.- Optimal Feedback Synthesis for Bolza Control Problem Arising in Linearized Fluid Structure Interaction.- Single-step One-shot Aerodynamic Shape Optimization.- Shape Differentiability of Drag Functional for Compressible Navier-Stokes Equations.- Null-controllability for a Coupled Heat-Finite-dimensional Beam System.- Feedback Modal Control of Partial Differential Equations.- Optimization Problems for Thin Elastic Structures.- A New Non-linear Semidefinite Programming Algorithm with an Application to Multidisciplinary Free Material Optimization.- How to Check Numerically the Sufficient Optimality Conditions for Infinite-dimensional Optimization Problems.- Hidden Boundary Shape Derivative for the Solution to Maxwell Equations and Non Cylindrical Wave Equations.

  • In this book the authors use a technique based on recurrence relations to study the convergence of the Newton method under mild differentiability conditions on the first derivative of the operator involved. The authors' technique relies on the construction of a scalar sequence, not majorizing, that satisfies a system of recurrence relations, and guarantees the convergence of the method. The application is user-friendly and has certain advantages over Kantorovich's majorant principle. First, it allows generalizations to be made of the results obtained under conditions of Newton-Kantorovich type and, second, it improves the results obtained through majorizing sequences. In addition, the authors extend the application of Newton's method in Banach spaces from the modification of the domain of starting points. As a result, the scope of Kantorovich's theory for Newton's method is substantially broadened. Moreover, this technique can be applied to any iterative method. This book is chiefly intended for researchers and (postgraduate) students working on nonlinear equations, as well as scientists in general with an interest in numerical analysis.

  • This book presents English translations of Michele Sce's most important works, originally written in Italian during the period 1955-1973, on hypercomplex analysis and algebras of hypercomplex numbers. Despite their importance, these works are not very well known in the mathematics community because of the language they were published in. Possibly the most remarkable instance is the so-called Fueter-Sce mapping theorem, which is a cornerstone of modern hypercomplex analysis, and is not yet understood in its full generality.This volume is dedicated to revealing and describing the framework Sce worked in, at an exciting time when the various generalizations of complex analysis in one variable were still in their infancy. In addition to faithfully translating Sce's papers, the authors discuss their significance and explain their connections to contemporary research in hypercomplex analysis. They also discuss many concrete examples that can serve as a basis for further research. The vast majority of the results presented here will be new to readers, allowing them to finally access the original sources with the benefit of comments from fellow mathematicians active in the field of hypercomplex analysis. As such, the book offers not only an important chapter in the history of hypercomplex analysis, but also a roadmap for further exciting research in the field.

  • This monograph serves as a much-needed, self-contained reference on the topic of modulation spaces. By gathering together state-of-the-art developments and previously unexplored applications, readers will be motivated to make effective use of this topic in future research. Because modulation spaces have historically only received a cursory treatment, this book will fill a gap in time-frequency analysis literature, and offer readers a convenient and timely resource.Foundational concepts and definitions in functional, harmonic, and real analysis are reviewed in the first chapter, which is then followed by introducing modulation spaces. The focus then expands to the many valuable applications of modulation spaces, such as linear and multilinear pseudodifferential operators, and dispersive partial differential equations. Because it is almost entirely self-contained, these insights will be accessible to a wide audience of interested readers.Modulation Spaces will be an ideal reference for researchers in time-frequency analysis and nonlinear partial differential equations. It will also appeal to graduate students and seasoned researchers who seek an introduction to the time-frequency analysis of nonlinear dispersive partial differential equations.

  • This book presents models written as partial differential equations and originating from various questions in population biology, such as physiologically structured equations, adaptive dynamics, and bacterial movement. Its purpose is to derive appropriate mathematical tools and qualitative properties of the solutions. The book further contains many original PDE problems originating in biosciences.

empty